(Chondrichthyes)

Cartilaginous Fish

Хрящові риби

Chondrichthyes is a class of jawed fish that contains the cartilaginous fish or chondrichthyans, which all have skeletons primarily composed of cartilage. They can be contrasted with the Osteichthyes or bony fish, which have skeletons primarily composed of bone tissue. Chondrichthyes are aquatic vertebrates with paired fins, paired nares, placoid scales, conus arteriosus in the heart, and a lack of opercula and swim bladders. Within the infraphylum Gnathostomata, cartilaginous fishes are distinct from all other jawed vertebrates.

The class is divided into two subclasses: Elasmobranchii (sharks, rays, skates and sawfish) and Holocephali (chimaeras, sometimes called ghost sharks, which are sometimes separated into their own class). Extant chondrichthyans range in size from the 10 cm finless sleeper ray to the over 10 m whale shark.

Skeleton

The skeleton is cartilaginous. The notochord is gradually replaced by a vertebral column during development, except in Holocephali, where the notochord stays intact. In some deepwater sharks, the column is reduced.

As they do not have bone marrow, red blood cells are produced in the spleen and the epigonal organ (special tissue around the gonads, which is also thought to play a role in the immune system). They are also produced in the Leydig’s organ, which is only found in certain cartilaginous fishes. The subclass Holocephali, which is a very specialized group, lacks both the Leydig’s and epigonal organs.

Appendages

Apart from electric rays, which have a thick and flabby body, with soft, loose skin, chondrichthyans have tough skin covered with dermal teeth (again, Holocephali is an exception, as the teeth are lost in adults, only kept on the clasping organ seen on the caudal ventral surface of the male), also called placoid scales (or dermal denticles), making it feel like sandpaper. In most species, all dermal denticles are oriented in one direction, making the skin feel very smooth if rubbed in one direction and very rough if rubbed in the other.

Originally, the pectoral and pelvic girdles, which do not contain any dermal elements, did not connect. In later forms, each pair of fins became ventrally connected in the middle when scapulocoracoid and puboischiadic bars evolved. In rays, the pectoral fins are connected to the head and are very flexible.

One of the primary characteristics present in most sharks is the heterocercal tail, which aids in locomotion.

Body covering

Chondrichthyans have tooth-like scales called dermal denticles or placoid scales. Denticles usually provide protection, and in most cases, streamlining. Mucous glands exist in some species, as well.

It is assumed that their oral teeth evolved from dermal denticles that migrated into the mouth, but it could be the other way around, as the teleost bony fish Denticeps clupeoides has most of its head covered by dermal teeth (as does, probably, Atherion elymus, another bony fish). This is most likely a secondary evolved characteristic, which means there is not necessarily a connection between the teeth and the original dermal scales.

Respiratory system

All chondrichthyans breathe through five to seven pairs of gills, depending on the species. In general, pelagic species must keep swimming to keep oxygenated water moving through their gills, whilst demersal species can actively pump water in through their spiracles and out through their gills. However, this is only a general rule and many species differ.

A spiracle is a small hole found behind each eye. These can be tiny and circular, such as found on the nurse shark (Ginglymostoma cirratum), to extended and slit-like, such as found on the wobbegongs (Orectolobidae). Many larger, pelagic species, such as the mackerel sharks (Lamnidae) and the thresher sharks (Alopiidae), no longer possess them.

Nervous system

In chondrichthyans, the nervous system is composed of a small brain, 8–10 pairs of cranial nerves, and a spinal cord with spinal nerves. They have several sensory organs which provide information to be processed. Ampullae of Lorenzini are a network of small jelly filled pores called electroreceptors which help the fish sense electric fields in water. This aids in finding prey, navigation, and sensing temperature. The lateral line system has modified epithelial cells located externally which sense motion, vibration, and pressure in the water around them. Most species have large well-developed eyes. Also, they have very powerful nostrils and olfactory organs. Their inner ears consist of 3 large semicircular canals which aid in balance and orientation. Their sound detecting apparatus has limited range and is typically more powerful at lower frequencies. Some species have electric organs which can be used for defense and predation. They have relatively simple brains with the forebrain not greatly enlarged. The structure and formation of myelin in their nervous systems are nearly identical to that of tetrapods, which has led evolutionary biologists to believe that Chondrichthyes were a cornerstone group in the evolutionary timeline of myelin development.

Reproduction

Fertilization is internal. Development is usually live birth (ovoviviparous species) but can be through eggs (oviparous). Some rare species are viviparous. There is no parental care after birth; however, some chondrichthyans do guard their eggs.

Capture-induced premature birth and abortion (collectively called capture-induced parturition) occurs frequently in sharks/rays when fished. Capture-induced parturition is often mistaken for natural birth by recreational fishers and is rarely considered in commercial fisheries management despite being shown to occur in at least 12% of live bearing sharks and rays (88 species to date).

Source: Wikipedia

(Sarcopterygii)

Lobe-finned Fishes

Лопатепері

Sarcopterygii—sometimes considered synonymous with Crossopterygii —is a clade (traditionally a class or subclass) of vertebrate animals which includes a group of bony fish commonly referred to as lobe-finned fish. These vertebrates are characterised by prominent muscular limb buds (lobes) within their fins, which are supported by articulated appendicular skeletons. This is in contrast to the other clade of bony fish, the Actinopterygii, which have only skin-covered bony spines supporting the fins.

The tetrapods, a mostly terrestrial clade of vertebrates, are now recognized as having evolved from sarcopterygian ancestors and are most closely related to lungfishes. Their paired pectoral and pelvic fins evolved into limbs, and their foregut diverticulum eventually evolved into air-breathing lungs. Cladistically, this would make the tetrapods a subgroup within Sarcopterygii and thus sarcopterygians themselves. As a result, the phrase “lobe-finned fish” normally refers to not the entire clade but only aquatic members that are not tetrapods, i.e. a paraphyletic group.

Non-tetrapod sarcopterygians were once the dominant predators of freshwater ecosystems during the Carboniferous and Permian periods, but suffered significant decline after the Great Dying. The only known extant non-tetrapod sarcopterygians are the two species of coelacanths and six species of lungfishes.

Early lobe-finned fishes are bony fish with fleshy, lobed, paired fins, which are joined to the body by a single bone. The fins of lobe-finned fishes differ from those of all other fish in that each is borne on a fleshy, lobelike, scaly stalk extending from the body that resembles a limb bud. The scales of sarcopterygians are true scaloids, consisting of lamellar bone surrounded by layers of vascular bone, cosmine (similar to dentin), and external keratin. The physical structure of tetrapodomorphs, fish bearing resemblance to tetrapods, provides valuable insights into the evolutionary shift from aquatic to terrestrial existence. Pectoral and pelvic fins have articulations resembling those of tetrapod limbs. The first tetrapod land vertebrates, basal amphibian organisms, possessed legs derived from these fins. Sarcopterygians also possess two dorsal fins with separate bases, as opposed to the single dorsal fin in ray-finned fish. The braincase of sarcopterygians primitively has a hinge line, but this is lost in tetrapods and lungfish. Early sarcopterygians commonly exhibit a symmetrical tail, while all sarcopterygians possess teeth that are coated with genuine enamel.

Most species of lobe-finned fishes are extinct. The largest known lobe-finned fish was Rhizodus hibberti from the Carboniferous period of Scotland which may have exceeded 7 m in length. Among the two groups of living species, the coelacanths and the lungfishes, the largest species is the West Indian Ocean coelacanth, reaching 2 m in length and weighing up 110 kg. The largest lungfish is the marbled lungfish which can reach 2 m in length and weigh up to 50 kg.

(Actinopterygii)

Ray-finned Fishes

Променепері

Actinopterygii, members of which are known as ray-finned fish or actinopterygians, is a class of bony fish that comprise over 50% of living vertebrate species. They are so called because of their lightly built fins made of webbings of skin supported by radially extended thin bony spines called lepidotrichia, as opposed to the bulkier, fleshy lobed fins of the sister clade Sarcopterygii (lobe-finned fish). Resembling folding fans, the actinopterygian fins can easily change shape and wetted area, providing superior thrust-to-weight ratios per movement compared to sarcopterygian and chondrichthyian fins. The fin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the articulation between these fins and the internal skeleton (e.g., pelvic and pectoral girdles).

The vast majority of actinopterygians are teleosts. By species count, they dominate the subphylum Vertebrata, and constitute nearly 99% of the over 30,000 extant species of fish. They are the most abundant nektonic aquatic animals and are ubiquitous throughout freshwater and marine environments from the deep sea to subterranean waters to the highest mountain streams. Extant species can range in size from Paedocypris, at 8 mm; to the massive ocean sunfish, at 2,300 kg; and to the giant oarfish, at 11 m. The largest ever known ray-finned fish, the extinct Leedsichthys from the Jurassic, has been estimated to have grown to 16.5 m.

Characteristics

Ray-finned fishes occur in many variant forms. The main features of typical ray-finned fish are shown in the adjacent diagram.

The swim bladder is a more derived structure and used for buoyancy. Except from the bichirs, which just like the lungs of lobe-finned fish have retained the ancestral condition of ventral budding from the foregut, the swim bladder in ray-finned fishes derives from a dorsal bud above the foregut. In early forms the swim bladder could still be used for breathing, a trait still present in Holostei (bowfins and gars). In some fish like the arapaima, the swim bladder has been modified for breathing air again, and in other lineages it has been completely lost.

The teleosts have urinary and reproductive tracts that are fully separated, while the Chondrostei have common urogenital ducts, and partially connected ducts are found in Cladistia and Holostei.

Ray-finned fishes have many different types of scales; but all teleosts have leptoid scales. The outer part of these scales fan out with bony ridges, while the inner part is crossed with fibrous connective tissue. Leptoid scales are thinner and more transparent than other types of scales, and lack the hardened enamel- or dentine-like layers found in the scales of many other fish. Unlike ganoid scales, which are found in non-teleost actinopterygians, new scales are added in concentric layers as the fish grows.

Teleosts and chondrosteans (sturgeons and paddlefish) also differ from the bichirs and holosteans (bowfin and gars) in having gone through a whole-genome duplication (paleopolyploidy). The WGD is estimated to have happened about 320 million years ago in the teleosts, which on average has retained about 17% of the gene duplicates, and around 180 million years ago in the chondrosteans. It has since happened again in some teleost lineages, like Salmonidae (80–100 million years ago) and several times independently within the Cyprinidae (in goldfish and common carp as recently as 14 million years ago).

Reproduction

In nearly all ray-finned fish, the sexes are separate, and in most species the females spawn eggs that are fertilized externally, typically with the male inseminating the eggs after they are laid. Development then proceeds with a free-swimming larval stage. However other patterns of ontogeny exist, with one of the commonest being sequential hermaphroditism. In most cases this involves protogyny, fish starting life as females and converting to males at some stage, triggered by some internal or external factor. Protandry, where a fish converts from male to female, is much less common than protogyny.

Most families use external rather than internal fertilization. Of the oviparous teleosts, most (79%) do not provide parental care. Viviparity, ovoviviparity, or some form of parental care for eggs, whether by the male, the female, or both parents is seen in a significant fraction (21%) of the 422 teleost families; no care is likely the ancestral condition. The oldest case of viviparity in ray-finned fish is found in Middle Triassic species of †Saurichthys. Viviparity is relatively rare and is found in about 6% of living teleost species; male care is far more common than female care. Male territoriality “preadapts” a species for evolving male parental care.

There are a few examples of fish that self-fertilise. The mangrove rivulus is an amphibious, simultaneous hermaphrodite, producing both eggs and spawn and having internal fertilisation. This mode of reproduction may be related to the fish’s habit of spending long periods out of water in the mangrove forests it inhabits. Males are occasionally produced at temperatures below 19 °C and can fertilise eggs that are then spawned by the female. This maintains genetic variability in a species that is otherwise highly inbred.

Source: Wikipedia

(Petromyzontida)

Lampreys

Міногові

Lampreys (sometimes inaccurately called lamprey eels) are a group of jawless fish comprising the order Petromyzontiformes, sole order in the class Petromyzontida. The adult lamprey is characterized by a toothed, funnel-like sucking mouth. About 38 extant species of lampreys are known, with around seven known extinct species. They are classified in three families – two small families in the Southern Hemisphere (Geotriidae, Mordaciidae) and one large family in the Northern Hemisphere (Petromyzontidae).

Modern lampreys spend the majority of their lives in the juvenile “ammocoete” stage, where they burrow into the sediment and filter feed. Adult carnivorous lampreys are the most well-known species, and feed by boring into the flesh of other fish (or in rare cases marine mammals) to consume flesh and/or blood; but only 18 species of lampreys engage in this predatory lifestyle (with Caspiomyzon suggested to feed on carrion rather than live prey). Of the 18 carnivorous species, nine migrate from saltwater to freshwater to breed (some of them also have freshwater populations), and nine live exclusively in freshwater. All noncarnivorous forms are freshwater species. Adults of the noncarnivorous species do not feed; they live on reserves acquired as ammocoetes.

Lampreys live mostly in coastal and fresh waters and are found in most temperate regions. Some species (e.g. Geotria australis, Petromyzon marinus, and Entosphenus tridentatus) travel significant distances in the open ocean, as evidenced by their lack of reproductive isolation between populations. Other species are found in land-locked lakes. Their larvae (ammocoetes) have a low tolerance for high water temperatures, which may explain why they are not distributed in the tropics.

Anatomy

Adults superficially resemble eels in that they have scaleless, elongated bodies, with the largest species, the sea lamprey having a maximum body length around 1.2 m. Lacking paired fins, adult lampreys have one nostril atop the head and seven gill pores on each side of the head.

The brain of the lamprey is divided into the telencephalon, diencephalon, midbrain, cerebellum, and medulla.

Lampreys have been described as the only living vertebrates to have four eyes, having a single pair of regular eyes, as well as two parietal eyes, a pineal and parapineal one (the exception is members of Mordacia). The eyes of juvenile lampreys are poorly developed eyespot-like structures that are covered in translucent skin, while the eyes of adult lampreys are well developed. Accommodation is done by flattening the cornea, which pushes the lens towards the retina. The eye of family Mordaciidae possess just a single type of photoreceptor (rod-like), the family Petromyzontidae possess two photoreceptor types (a cone-like and a rod-like), and the family Geotriidae possesses five types of photoreceptors.

The buccal cavity, anterior to the gonads, is responsible for attaching the animal, through suction, to either a stone or its prey. This then allows the tongue to make contact with the stone to rasp algae, or tear at the flesh of their prey to yield blood.

The last common ancestor of lampreys appears to have been specialized to feed on the blood and body fluids of other fish after metamorphosis. They attach their mouthparts to the target animal’s body, then use three horny plates (laminae) on the tip of their piston-like tongue, one transversely and two longitudinally placed, to scrape through surface tissues until they reach body fluids. The teeth on their oral disc are primarily used to help the animal attach itself to its prey. Made of keratin and other proteins, lamprey teeth have a hollow core to give room for replacement teeth growing under the old ones. Some of the original blood-feeding forms have evolved into species that feed on both blood and flesh, and some who have become specialized to eat flesh and may even invade the internal organs of the host. Tissue feeders can also involve the teeth on the oral disc in the excision of tissue. As a result, the flesh-feeders have smaller buccal glands as they do not require the production of anticoagulant continuously and mechanisms for preventing solid material entering the branchial pouches, which could otherwise potentially clog the gills. A study of the stomach content of some lampreys has shown the remains of intestines, fins and vertebrae from their prey.

The unique morphological characteristics of lampreys, such as their cartilaginous skeleton, suggest they are the sister taxon of all living jawed vertebrates (gnathostomes). They are usually considered the most basal group of the Vertebrata. Instead of true vertebrae, they have a series of cartilaginous structures called arcualia arranged above the notochord. Hagfish, which resemble lampreys, have traditionally been considered the sister taxon of the true vertebrates (lampreys and gnathostomes) but DNA evidence suggests that they are in fact the sister taxon of lampreys.

The heart of the lamprey is anterior to the intestines. It contains the sinus, one atrium, and one ventricle protected by the pericardial cartilages.

The pineal gland, a photosensitive organ regulating melatonin production by capturing light signals through the photoreceptor cell converting them into intercellular signals of the lamprey is located in the midline of its body, for lamprey, the pineal eye is accompanied by the parapineal organ.

One of the key physical components to the lamprey are the intestines, which are located ventral to the notochord. Intestines aid in osmoregulation by intaking water from its environment and desalinating the water they intake to an iso-osmotic state with respect to blood, and are also responsible for digestion.

Close to the jaws of juvenile lampreys, a muscular flap-like structure called the velum is present, which serves to generate a water current towards the mouth opening, which enables feeding and respiration.
Studies have shown that lampreys are among the most energy-efficient swimmers. Their swimming movements generate low-pressure zones around the body, which pull rather than push their bodies through the water.

Different species of lamprey have many shared physical characteristics. The same anatomical structure can serve different functions in the lamprey depending on whether or not it is carnivorous. The mouth and suction capabilities of the lamprey not only allow it to cling to a fish as a parasite, but provide it with limited climbing ability so that it can travel upstream and up ramps or rocks to breed. This ability has been studied in an attempt to better understand how lampreys battle the current and move forward despite only being able to hold onto the rock at a single point.

Many lampreys exhibit countershading, a form of camouflage. Similarly to many other aquatic species, most lampreys have a dark-colored back, which enables them to blend in with the ground below when seen from above by a predator. Their light-colored undersides allow them to blend in with the bright air and water above them if a predator sees them from below.

Lamprey coloration can also vary according to the region and specific environment in which the species is found. Some species can be distinguished by their unique markings – for example, Geotria australis individuals display two bluish stripes running the length of its body as an adult. These markings can also sometimes be used to determine what stage of the life cycle the lamprey is in; G. australis individuals lose these stripes when they approach the reproductive phase and begin to travel upstream. Another example is Petromyzon marinus, which shifts to more of an orange color as it reaches the reproductive stage in its life cycle.

Lifecycle

The adults spawn in nests of sand, gravel and pebbles in clear streams. After hatching from the eggs, young larvae—called ammocoetes—will drift downstream with the current till they reach soft and fine sediment in silt beds, where they will burrow in silt, mud and detritus, taking up an existence as filter feeders, collecting detritus, algae, and microorganisms. The eyes of the larvae are underdeveloped, but are capable of discriminating changes in illuminance. Ammocoetes can grow from 8–10 cm to about 20 cm. Many species change color during a diurnal cycle, becoming dark at day and pale at night. The skin also has photoreceptors, light sensitive cells, most of them concentrated in the tail, which helps them to stay buried. Lampreys may spend up to eight years as ammocoetes, while species such as the Arctic lamprey may only spend one to two years as larvae, prior to undergoing a metamorphosis which generally lasts 3–4 months, but can vary between species. While metamorphosing, they do not eat.

The rate of water moving across the ammocoetes’ feeding apparatus is the lowest recorded in any suspension feeding animal, and they therefore require water rich in nutrients to fulfill their nutritional needs. While the majority of (invertebrate) suspension feeders thrive in waters containing under 1 mg suspended organic solids per litre, ammocoetes demand minimum 4 mg/L, with concentrations in their habitats having been measured up to 40 mg/L.

During metamorphosis the lamprey loses both the gallbladder and the biliary tract, and the endostyle turns into a thyroid gland.

Some species, including those that are not carnivorous and do not feed even following metamorphosis, live in freshwater for their entire lifecycle, spawning and dying shortly after metamorphosing. In contrast, many species are anadromous and migrate to the sea, beginning to prey on other animals while still swimming downstream after their metamorphosis provides them with eyes, teeth, and a sucking mouth. Those that are anadromous are carnivorous, feeding on fishes or marine mammals.

Anadromous lampreys spend up to four years in the sea before migrating back to freshwater, where they spawn. Adults create nests (called redds) by moving rocks, and females release thousands of eggs, sometimes up to 100,000. The male, intertwined with the female, fertilizes the eggs simultaneously. Being semelparous, both adults die after the eggs are fertilized.

Research on sea lampreys has revealed that sexually mature males use a specialized heat-producing tissue in the form of a ridge of fat cells near the anterior dorsal fin to stimulate females. After having attracted a female with pheromones, the heat detected by the female through body contact will encourage spawning.

Source: Wikipedia

(Myxini)

Hagfish

Міксини

Hagfish, of the class Myxini, are eel-shaped jawless fish (occasionally called slime eels). Hagfish are the only known living animals that have a skull but no vertebral column, although they do have rudimentary vertebrae. Hagfish are marine predators and scavengers that can defend themselves against other larger predators by releasing copious amounts of slime from mucous glands in their skin.

Although their exact relationship to the only other living group of jawless fish, the lampreys, was long the subject of controversy, genetic evidence suggests that hagfish and lampreys are more closely related to each other than to jawed vertebrates, thus forming the superclass Cyclostomi. The oldest-known stem group hagfish are known from the Late Carboniferous, around 310 million years ago, with modern representatives first being recorded in the mid-Cretaceous around 100 million years ago.

Body features

Hagfish have elongated, eel-like bodies, and paddle-like tails. The skin is naked and covers the body like a loosely fitting sock. They are generally a dull pink color and look quite worm-like. They have cartilaginous skulls (although the part surrounding the brain is composed primarily of a fibrous sheath) and tooth-like structures composed of keratin. Colors depend on the species, ranging from pink to blue-grey, and black or white spots may be present. Eyes are simple eyespots, not lensed eyes that can resolve images. Hagfish have no true fins and have six or eight barbels around the mouth and a single nostril. Instead of vertically articulating jaws like Gnathostomata (vertebrates with jaws), they have a pair of horizontally moving structures with tooth-like projections for pulling off food. The mouth of the hagfish has two pairs of horny, comb-shaped teeth on a cartilaginous plate that protracts and retracts. These teeth are used to grasp food and draw it toward the pharynx.

Its skin is attached to the body only along the center ridge of the back and at the slime glands, and is filled with close to a third of the body’s blood volume, giving the impression of a blood-filled sack. It is assumed this is an adaptation to survive predator attacks. The Atlantic hagfish, representative of the subfamily Myxininae, and the Pacific hagfish, representative of the subfamily Eptatretinae, differ in that the latter has muscle fibers embedded in the skin. The resting position of the Pacific hagfish also tends to be coiled, while that of the Atlantic hagfish is stretched.

Slime

Hagfish can exude copious quantities of a milky and fibrous slime or mucus, from specialized slime glands. When released in seawater, the slime expands to 10,000 times its original size in 0.4 seconds. This slime that hagfish excrete has very thin fibers that make it more durable and retentive than the slime excreted by other animals. The fibers are made of proteins and also make the slime flexible. If they are caught by a predator, they can quickly release a large amount of slime to escape. If they remain captured, they can tie themselves in an overhand knot, and work their way from the head to the tail of the animal, scraping off the slime and freeing themselves from their captor. Rheological investigations showed that hagfish slime viscosity increases in elongational flow which favors gill clogging of suction feeding fish, while its viscosity decreases in shear which facilitates scraping off the slime by the travelling-knot.

Recently, the slime was reported to entrain water in its keratin-like intermediate filaments excreted by gland thread cells, creating a slow-to-dissipate, viscoelastic substance, rather than a simple gel. It has been shown to impair the function of a predator fish’s gills. In this case, the hagfish’s mucus would clog the predator’s gills, disabling their ability to respire. The predator would release the hagfish to avoid suffocation. Because of the mucus, few marine predators target the hagfish. Other predators of hagfish are varieties of birds or mammals.

Free-swimming hagfish also slime when agitated, and later clear the mucus using the same travelling-knot behavior. The reported gill-clogging effect suggests that the travelling-knot behavior is useful or even necessary to restore the hagfish’s own gill function after sliming.

Respiration

A hagfish generally respires by taking in water through its pharynx, past the velar chamber, and bringing the water through the internal gill pouches, which can vary in number from five to 16 pairs, depending on species. The gill pouches open individually, but in Myxine, the openings have coalesced, with canals running backwards from each opening under the skin, uniting to form a common aperture on the ventral side known as the branchial opening. The esophagus is also connected to the left branchial opening, which is therefore larger than the right one, through a pharyngocutaneous duct (esophageocutaneous duct), which has no respiratory tissue. This pharyngocutaneous duct is used to clear large particles from the pharynx, a function also partly taking place through the nasopharyngeal canal. In other species, the coalescence of the gill openings is less complete, and in Bdellostoma, each pouch opens separately to the outside, as in lampreys.The unidirectional water flow passing the gills is produced by rolling and unrolling velar folds located inside a chamber developed from the nasohypophyseal tract, and is operated by a complex set of muscles inserting into cartilages of the neurocranium, assisted by peristaltic contractions of the gill pouches and their ducts. Hagfish also have a well-developed dermal capillary network that supplies the skin with oxygen when the animal is buried in anoxic mud, as well as a high tolerance for both hypoxia and anoxia, with a well-developed anaerobic metabolism. Members of the group have spent 36 hours in water completely devoid of dissolved oxygen, and made a complete recovery. The skin has also been suggested to be capable of cutaneous respiration.

Nervous system

The origins of the vertebrate nervous system are of considerable interest to evolutionary biologists, and cyclostomes (hagfish and lampreys) are an important group for answering this question. The complexity of the hagfish brain has been an issue of debate since the late 19th century, with some morphologists suggesting that they do not possess a cerebellum, while others suggest that it is continuous with the midbrain. It is now considered that the hagfish neuroanatomy is similar to that of lampreys. A common feature of both cyclostomes is the absence of myelin in neurons. The brain of a hagfish has specific parts similar to the brains of other vertebrates. The dorsal and ventral muscles located towards the side of the hagfish body are connected to spinal nerves. The spinal nerves that connect to the muscles of the pharyngeal wall grow individually to reach them.

Eye

The hagfish eye lacks a lens, extraocular muscles, and the three motor cranial nerves (III, IV, and VI) found in more complex vertebrates, which is significant to the study of the evolution of more complex eyes. A parietal eye is also absent in extant hagfish. Hagfish eyespots, when present, can detect light, but as far as it is known, none can resolve detailed images. In Myxine and Neomyxine, the eyes are partly covered by the trunk musculature. Paleontological evidence suggests, however, that the hagfish eye is not plesiomorphic but rather degenerative, as fossils from the Carboniferous have revealed hagfish-like vertebrates with complex eyes. This would suggest that ancestrally Myxini possessed complex eyes.

Cardiac function, circulation, and fluid balance

Hagfish are known to have one of the lowest blood pressures among the vertebrates. One of the most primitive types of fluid balance found in animals is among these creatures; whenever a rise in extracellular fluid occurs, the blood pressure rises and this, in turn, is sensed by the kidney, which excretes excess fluid. They also have the highest blood volume to body mass of any chordate, with 17 ml of blood per 100 g of mass.

The hagfish circulatory system has been of considerable interest to evolutionary biologists and present day readers of physiology. Some observers first believed that the hagfish heart was not innervated (as the hearts of jawed vertebrates are), but further investigation revealed that the hagfish does have a true innervated heart. The hagfish circulatory system also includes multiple accessory pumps throughout the body, which are considered auxiliary “hearts”.

Hagfish are the only known vertebrates with osmoregulation isosmotic to their external environment. Their renal function remains poorly described. There is a hypothesis that they excrete ions in bile salts.

Musculoskeletal system

Hagfish musculature differs from jawed vertebrates in that they have neither a horizontal septum nor a vertical septum, which in jawed vertebrates are junctions of connective tissue that separate the hypaxial musculature and epaxial musculature. They do, however, have true myomeres and myosepta like all vertebrates. The mechanics of their craniofacial muscles in feeding have been investigated, revealing advantages and disadvantages of their dental plate. In particular, hagfish muscles have increased force and gape size compared to similar-sized jawed vertebrates, but lack the speed amplification given by jawed vertebrates’ muscles, suggesting that jaws are faster acting than hagfish dental plates.

Reproduction

Very little is known about hagfish reproduction. Obtaining embryos and observing reproductive behavior are difficult due to the deep-sea habitat of many hagfish species. In the wild, females outnumber males, with the exact sex-ratio differing depending on the species. E. burgeri, for example, has nearly a 1:1 ratio, while M. glutinosa females are significantly more common than males. Some species of hagfish are sexually undifferentiated before maturation, and possess gonadal tissue for both ovaries and testis. It has been suggested that females develop earlier than males, and that this may be the reason for unequal sex ratios. Hagfish testis are relatively small.

Depending on species, females lay from one to 30 tough, yolky eggs. These tend to aggregate due to having Velcro-like tufts at either end. It is unclear how hagfish go about laying eggs, although researchers have proposed three hypotheses based on observations of the low percentage of males and small testis. The hypotheses are that female hagfish lay eggs in small crevices in rock formations, the eggs are laid in burrow beneath the sand, and the slime produced by the hagfish is used to hold the eggs in a small area. It is worth noting that no direct evidence has been found to support any of these hypotheses. Hagfish do not have a larval stage, in contrast to lampreys.

Hagfish have a mesonephric kidney and are often neotenic of their pronephric kidney. The kidney(s) are drained via mesonephric/archinephric duct. Unlike many other vertebrates, this duct is separate from the reproductive tract, and the proximal tubule of the nephron is also connected with the coelom, providing lubrication. The single testicle or ovary has no transportation duct. Instead, the gametes are released into the coelom until they find their way to the posterior end of the caudal region, whereby they find an opening in the digestive system.

The hagfish embryo can develop for as long as 11 months before hatching, which is shorter in comparison to other jawless vertebrates. Not much was known about hagfish embryology until recently, when husbandry advances enabled considerable insight into the group’s evolutionary development. New insights into the evolution of neural crest cells, support the consensus that all vertebrates share these cells, which might be regulated by a common subset of genes. Their genome has a large number of microchromosomes which are lost during the animal’s development, leaving only the reproductive organs with a complete genome. Hagfish possess gonadotropins which secrete from pituitary glands to the gonads to stimulate development. This suggests that hagfish have an early version of the hypothalamic–pituitary–gonadal axis, a system which once thought to be exclusive to the Gnathostomes.

Some species of hagfish reproduce seasonally, stimulated by hormones from their pituitary gland. E. burgeri is known to reproduce and migrate annually.

Feeding

While polychaete marine worms on or near the sea floor are a major food source, hagfish can feed upon and often even enter and eviscerate the bodies of dead and dying/injured sea creatures much larger than themselves. They are known to devour their prey from the inside. Hagfish have the ability to absorb dissolved organic matter across the skin and gill, which may be an adaptation to a scavenging lifestyle, allowing them to maximize sporadic opportunities for feeding. From an evolutionary perspective, hagfish represent a transitory state between the generalized nutrient absorption pathways of aquatic invertebrates and the more specialized digestive systems of aquatic vertebrates.

Like leeches, they have a sluggish metabolism and can survive months between feedings; their feeding behavior, however, appears quite vigorous. Analysis of the stomach content of several species has revealed a large variety of prey, including polychaetes, shrimp, hermit crabs, cephalopods, brittle stars, bony fishes, sharks, birds, and whale flesh.

In captivity, hagfish are observed to use the overhand-knot behavior in reverse (tail-to-head) to assist them in gaining mechanical advantage to pull out chunks of flesh from carrion fish or cetaceans, eventually making an opening to permit entry to the interior of the body cavity of larger carcasses. A healthy larger sea creature likely would be able to outfight or outswim this sort of assault.

This energetic opportunism on the part of the hagfish can be a great nuisance to fishermen, as they can devour or spoil entire deep drag-netted catches before they can be pulled to the surface. Since hagfish are typically found in large clusters on and near the bottom, a single trawler’s catch could contain several dozen or even hundreds of hagfish as bycatch, and all the other struggling, captive sea life make easy prey for them.

The digestive tract of the hagfish is unique among chordates because the food in the gut is enclosed in a permeable membrane, analogous to the peritrophic matrix of insects. They are also able to absorb nutrients directly through their skin.

Hagfish have also been observed actively hunting the red bandfish, Cepola haastii, in its burrow, possibly using their slime to suffocate the fish before grasping it with their dental plates and dragging it from the burrow.

Source: Wikipedia

(Ascidiacea)

Sea Squirts

Асцидії

Ascidiacea, commonly known as the ascidians or sea squirts, is a paraphyletic class in the subphylum Tunicata of sac-like marine invertebrate filter feeders. Ascidians are characterized by a tough outer test or “tunic” made of the polysaccharide cellulose.

Ascidians are found all over the world, usually in shallow water with salinities over 2.5%. While members of the Thaliacea (salps, doliolids and pyrosomes) and Appendicularia (larvaceans) swim freely like plankton, sea squirts are sessile animals after their larval phase: they then remain firmly attached to their substratum, such as rocks and shells.

There are 2,300 species of ascidians and three main types: solitary ascidians, social ascidians that form clumped communities by attaching at their bases, and compound ascidians that consist of many small individuals (each individual is called a zooid) forming large colonies.

Sea squirts feed by taking in water through a tube, the oral siphon. The water enters the mouth and pharynx, flows through mucus-covered gill slits (also called pharyngeal stigmata) into a water chamber called the atrium, then exits through the atrial siphon.

Some authors now include the thaliaceans in Ascidiacea, making it monophyletic.

Anatomy

Sea squirts are rounded or cylindrical animals ranging from about 0.5 to 10 cm in size. One end of the body is always firmly fixed to rock, coral, or some similar solid surface. The lower surface is pitted or ridged, and in some species has root-like extensions that help the animal grip the surface. The body wall is covered by a smooth thick tunic, which is often quite rigid. The tunic consists of cellulose, along with proteins and calcium salts. Unlike the shells of molluscs, the tunic is composed of living tissue and often has its own blood supply. In some colonial species, the tunics of adjacent individuals are fused into a single structure.

The upper surface of the animal, opposite to the part gripping the substratum, has two openings, or siphons. When removed from the water, the animal often violently expels water from these siphons, hence the common name of “sea squirt”. The body itself can be divided into up to three regions, although these are not clearly distinct in most species. The pharyngeal region contains the pharynx, while the abdomen contains most of the other bodily organs, and the postabdomen contains the heart and gonads. In many sea squirts, the postabdomen, or even the entire abdomen, are absent, with their respective organs being located more anteriorly.

As its name implies, the pharyngeal region is occupied mainly by the pharynx. The large buccal siphon opens into the pharynx, acting like a mouth. The pharynx itself is ciliated and contains numerous perforations, or stigmata, arranged in a grid-like pattern around its circumference. The beating of the cilia sucks water through the siphon, and then through the stigmata. A long ciliated groove, or endostyle, runs along one side of the pharynx, and a projecting ridge along the other. The endostyle may be homologous with the thyroid gland of vertebrates, despite its differing function.

The pharynx is surrounded by an atrium, through which water is expelled through a second, usually smaller, siphon. Cords of connective tissue cross the atrium to maintain the general shape of the body. The outer body wall consists of connective tissue, muscle fibres, and a simple epithelium directly underlying the tunic.

Digestive system

The pharynx forms the first part of the digestive system. The endostyle produces a supply of mucus which is then passed into the rest of the pharynx by the beating of flagella along its margins. The mucus then flows in a sheet across the surface of the pharynx, trapping planktonic food particles as they pass through the stigmata, and is collected in the ridge on the dorsal surface. The ridge bears a groove along one side, which passes the collected food downwards and into the oesophageal opening at the base of the pharynx.

The esophagus runs downwards to a stomach in the abdomen, which secretes enzymes that digest the food. An intestine runs upwards from the stomach parallel to the oesophagus and eventually opens, through a short rectum and anus, into a cloaca just below the atrial siphon. In some highly developed colonial species, clusters of individuals may share a single cloaca, with all the atrial siphons opening into it, although the buccal siphons all remain separate. A series of glands lie on the outer surface of the intestine, opening through collecting tubules into the stomach, although their precise function is unclear.

Circulatory system

The heart is a curved muscular tube lying in the postabdomen, or close to the stomach. Each end opens into a single vessel, one running to the endostyle, and the other to the dorsal surface of the pharynx. The vessels are connected by a series of sinuses, through which the blood flows. Additional sinuses run from that on the dorsal surface, supplying blood to the visceral organs, and smaller vessels commonly run from both sides into the tunic. Nitrogenous waste, in the form of ammonia, is excreted directly from the blood through the walls of the pharynx, and expelled through the atrial siphon.

Unusually, the heart of sea squirts alternates the direction in which it pumps blood every three to four minutes. There are two excitatory areas, one at each end of the heart, with first one being dominant, to push the blood through the ventral vessel, and then the other, pushing it dorsally.

There are four different types of blood cell: lymphocytes, phagocytic amoebocytes, nephrocytes and morula cells. The nephrocytes collect waste material such as uric acid and accumulate it in renal vesicles close to the digestive tract. The morula cells help to form the tunic, and can often be found within the tunic substance itself. In some species, the morula cells possess pigmented reducing agents containing iron (hemoglobin), giving the blood a red colour, or vanadium (hemovanadin) giving it a green colour. In that case the cells are also referred to as vanadocytes.

Nervous system

The ascidian central nervous system is formed from a plate that rolls up to form a neural tube. The number of cells within the central nervous system is very small. The neural tube is composed of the sensory vesicle, the neck, the visceral or tail ganglion, and the caudal nerve cord. The anteroposterior regionalization of the neural tube in ascidians is comparable to that in vertebrates.

Although there is no true brain, the largest ganglion is located in the connective tissue between the two siphons, and sends nerves throughout the body. Beneath this ganglion lies an exocrine gland that empties into the pharynx. The gland is formed from the nerve tube, and is therefore homologous to the spinal cord of vertebrates.

Sea squirts lack special sense organs, although the body wall incorporates numerous individual receptors for touch, chemoreception, and the detection of light.

Life history

Almost all ascidians are hermaphrodites and conspicuous mature ascidians are sessile. The gonads are located in the abdomen or postabdomen, and include one testis and one ovary, each of which opens via a duct into the cloaca. Broadly speaking, the ascidians can be divided into species which exist as independent animals (the solitary ascidians) and those which are interdependent (the colonial ascidians). Different species of ascidians can have markedly different reproductive strategies, with colonial forms having mixed modes of reproduction.

Solitary ascidians release many eggs from their atrial siphons; external fertilization in seawater takes place with the coincidental release of sperm from other individuals. A fertilized egg spends 12 hours to a few days developing into a free-swimming tadpole-like larva, which then takes no more than 36 hours to settle and metamorphose into a juvenile.

As a general rule, the larva possesses a long tail, containing muscles, a hollow dorsal nerve tube and a notochord, both features clearly indicative of the animal’s chordate affinities. One group though, the molgulid ascidians, have evolved tailless species on at least four separate occasions, and even direct development. A notochord is formed early in development and always consists of a row of exactly 40 cells. The nerve tube enlarges in the main body, and will eventually become the cerebral ganglion of the adult. The tunic develops early in embryonic life and extends to form a fin along the tail in the larva. The larva also has a statocyst and a pigmented cup above the mouth, which opens into a pharynx lined with small clefts opening into a surrounding atrium. The mouth and anus are originally at opposite ends of the animal, with the mouth only moving to its final (posterior) position during metamorphosis.

The larva selects and settles on appropriate surfaces using receptors sensitive to light, orientation to gravity, and tactile stimuli. When its anterior end touches a surface, papillae (small, finger-like nervous projections) secrete an adhesive for attachment. Adhesive secretion prompts an irreversible metamorphosis: various organs (such as the larval tail and fins) are lost while others rearrange to their adult positions, the pharynx enlarges, and organs called ampullae grow from the body to permanently attach the animal to the substratum. The siphons of the juvenile ascidian become orientated to optimise current flow through the feeding apparatus. Sexual maturity can be reached in as little as a few weeks. Since the larva is more advanced than its adult, this type of metamorphosis is called ‘retrogressive metamorphosis’. This feature is a landmark for the ‘theory of retrogressive metamorphosis or ascidian larva theory’; the true chordates are hypothesized to have evolved from sexually mature larvae.

Sexual reproduction

Different colonial ascidian species produce sexually derived offspring by one of two dispersal strategies – colonial species are either broadcast spawners (long-range dispersal) or philopatric (very short-range dispersal). Broadcast spawners release sperm and ova into the water column and fertilization occurs near to the parent colonies. Some species are also viviparous. Resultant zygotes develop into microscopic larvae that may be carried great distances by oceanic currents. The larvae of sessile forms which survive eventually settle and complete maturation on the substratum- then they may bud asexually to form a colony of zooids.

The picture is more complicated for the philopatrically dispersed ascidians: sperm from a nearby colony (or from a zooid of the same colony) enter the atrial siphon and fertilization takes place within the atrium. Embryos are then brooded within the atrium where embryonic development takes place: this results in macroscopic tadpole-like larvae. When mature, these larvae exit the atrial siphon of the adult and then settle close to the parent colony (often within meters). The combined effect of short sperm range and philopatric larval dispersal results in local population structures of closely related individuals/inbred colonies. Generations of colonies which are restricted in dispersal are thought to accumulate adaptions to local conditions, thereby providing advantages over newcomers.

Trauma or predation often results in fragmentation of a colony into subcolonies. Subsequent zooid replication can lead to coalescence and circulatory fusion of the subcolonies. Closely related colonies which are proximate to each other may also fuse if they coalesce and if they are histocompatible. Ascidians were among the first animals to be able to immunologically distinguish self from non-self as a mechanism to prevent unrelated colonies from fusing to them and parasitizing them.

Fertilization

Sea squirt eggs are surrounded by a fibrous vitelline coat and a layer of follicle cells that produce sperm-attracting substances. In fertilization, the sperm passes through the follicle cells and binds to glycosides on the vitelline coat. The sperm’s mitochondria are left behind as the sperm enters and drives through the coat; this translocation of the mitochondria might provide the necessary force for penetration. The sperm swims through the perivitelline space, finally reaching the egg plasma membrane and entering the egg. This prompts rapid modification of the vitelline coat, through processes such as the egg’s release of glycosidase into the seawater, so no more sperm can bind and polyspermy is avoided. After fertilization, free calcium ions are released in the egg cytoplasm in waves, mostly from internal stores. The temporary large increase in calcium concentration prompts the physiological and structural changes of development.

The dramatic rearrangement of egg cytoplasm following fertilization, called ooplasmic segregation, determines the dorsoventral and anteroposterior axes of the embryo. There are at least three types of sea squirt egg cytoplasm: ectoplasm containing vesicles and fine particles, endoderm containing yolk platelets, and myoplasm containing pigment granules, mitochondria, and endoplasmic reticulum. In the first phase of ooplasmic segregation, the myoplasmic actin-filament network contracts to rapidly move the peripheral cytoplasm (including the myoplasm) to the vegetal pole, which marks the dorsal side of the embryo. In the second phase, the myoplasm moves to the subequatorial zone and extends into a crescent, which marks the future posterior of the embryo. The ectoplasm with the zygote nucleus ends up at the animal hemisphere while the endoplasm ends up in the vegetal hemisphere.

Asexual reproduction

Many colonial sea squirts are also capable of asexual reproduction, although the means of doing so are highly variable between different families. In the simplest forms, the members of the colony are linked only by rootlike projections from their undersides known as stolons. Buds containing food storage cells can develop within the stolons and, when sufficiently separated from the ‘parent’, may grow into a new adult individual.

In other species, the postabdomen can elongate and break up into a string of separate buds, which can eventually form a new colony. In some, the pharyngeal part of the animal degenerates, and the abdomen breaks up into patches of germinal tissue, each combining parts of the epidermis, peritoneum, and digestive tract, and capable of growing into new individuals.

In yet others, budding begins shortly after the larva has settled onto the substrate. In the family Didemnidae, for instance, the individual essentially splits into two, with the pharynx growing a new digestive tract and the original digestive tract growing a new pharynx.

Source: Wikipedia

(Thaliacea)

Thaliaceans

Сальпи

Thaliacea is a class of marine chordates within the subphylum Tunicata, comprising the salps, pyrosomes and doliolids. Unlike their benthic relatives the ascidians, from which they are believed to have emerged, thaliaceans are free-floating (pelagic) for their entire lifespan. The group includes species with complex life cycles, with both solitary and colonial forms.

The three orders of thaliaceans are filter feeders. Pyrosomes are colonial animals, with multiple tiny ascidian-like zooids arranged in a cylinder closed at one end. All of the atrial siphons point inwards, emptying into a single, common cloaca in the centre of the cylinder. As the water exhaled by the zooids exits through a common opening, the water movement slowly propels the pyrosome through the sea. Salps and doliolids have a transparent barrel-shaped body through which they pump water, propelling them through the sea, and from which they extract food. The bulk of the body consists of the large pharynx. Water enters the pharynx through the large buccal siphon at the front end of the animal, and is forced through a number of slits in the pharyngeal wall into an atrium lying just behind it. From here, the water is expelled through an atrial siphon at the posterior end. The pharynx is both a respiratory organ and a digestive one, filtering food from the water with the aid of a net of mucus slowly pulled across the slits by cilia.

Doliolids and salps alternate between asexual and sexual life stages. Salp colonies can be several meters in length. Doliolids and salps rely on muscular action to propel themselves through surrounding seawater.

Thaliaceans have complex lifecycles. Doliolid eggs hatch into swimming tadpole larvae, which are the common larval stage for other urochordates. Pyrosomes are ovoviviparous, meaning the eggs develop inside the “mother” without the tadpole stage. Salps are viviparous, meaning the embryos are linked to the “mother” by a placenta. This then develops into an oozoid, which reproduces asexually by budding to produce a number of blastozoids, which form long chains (see image). The individual blastozoids then reproduce sexually to produce the eggs and the next generation of oozoids.

The dorsal, hollow nerve cord and notochord found in Chordata has been lost, except for a rudimentary one in some doliolid larvae.

 

(Appendicularia)

Larvaceans

Апендикулярії

Larvaceans, copelates or appendicularians, class Appendicularia, are solitary, free-swimming tunicates found throughout the world’s oceans. While larvaceans are filter feeders like most other tunicates, they keep their tadpole-like shape as adults, with the notochord running through the tail. They can be found in the pelagic zone, specifically in the photic zone, or sometimes deeper. They are transparent planktonic animals, usually ranging from 2 mm to 8 mm in body length including the tail, although giant larvaceans can reach up to 10 cm in length.

Larvaceans are known for the large houses they build around their bodies to assist in filter-feeding. Secreted from mucus and cellulose, these structures often comprise several layers of filters and can reach up to ten times their body length. In some genera like Oikopleura, houses are built and discarded every few hours, with sinking houses playing a key role in the oceanic carbon cycle.

Anatomy

The adult larvaceans resemble the tadpole-like larvae of most tunicates. Like a common tunicate larva, the adult Appendicularia have a discrete trunk and tail. It was originally believed that larvaceans were neotenic tunicates, giving them their common name. Recent studies hint at an earlier divergence, with ascidians having developed their sessile adult form later on.

As the larvae of ascidian tunicates don’t feed at all, the larvae of doliolids goes through their metamorphosis while still inside the egg, and salps and pyrosomes have both lost the larval stage, it makes the larvaceans the only tunicates that feed and have fully functional internal organs during their tailed “tadpole stage”, which in Appendicularia is permanent.

The full development of Oikopleura dioica and the fate of its cell lineages have been well-documented, providing insight into larvacean anatomy. Being a model organism, most of our knowledge on larvaceans comes from this specific taxon. Variations in body shape and anatomy exist between families, although the general body plan stays similar.

Trunk

The trunk can roughly be divided into three regions — pharyngeo-brachial, digestive and genital — which are more or less distinct depending on the genus. Like in vertebrates, the digestive system comprises in order a mouth, pharynx, oesophagus, stomach, intestine and rectum.

The pharynx is equipped with an endostyle on its lower side, a specialized organ helping direct food particles inside. It also possesses two spiracles, each surrounded by a ring of cilia, which direct food particles from the inner filter’s junction to the mouth.

In some genera like Oikopleura, the tract is U-shaped, with the anus located in a forwards position compared to the stomach and intestine. Others like Fritillaria present a more segmented appearance, with a straighter digestive tract and well-separated pharyngeal and digestive sections. The species Appendicularia sicula doesn’t have any anus at all, leading to accumulation of undigested material.

Appendicularia retains the ancestral chordate characteristics of having the pharyngeal spiracles and the anus open directly to the outside, and by the lack of the atrium and the atrial siphon found in related classes.

The gonads are located in the posterior section of the trunk, beyond the digestive tract. They are the only section of the body not to be well-distinguished in the juvenile post-tail shift, instead only growing in size in the days leading to spawning.

Tail

The tail of larvaceans contain a central notochord, a dorsal nerve cord, and a series of striated muscle bands enveloped either by epithelial tissue (oikopleurids) or by an acellular basement membrane (fritillarids). Unlike the ascidian larvae, the tail nerve cord in larvaceans contains some neurons.

The tail twists during development, with its dorsal and ventral sides becoming left and right sides respectively. In this way, the dorsal nerve cord actually runs through the tail to the left of the notochord, connecting to the rest of the nervous system at the caudal ganglion at the base of the tail.

The muscle bands surrounding the notochord and nerve cord consist of rows of paired muscle cells, or myocytes, running along the length of the tail.

House

To assist in their filter-feeding, larvaceans produce a test or “house” made of mucopolysaccharides and cellulose, secreted from specialized cells termed oikoplasts. In most species, the house surrounds the animal like a bubble. Even for species in which the house does not completely surround the body, such as Fritillaria, the house is always present and attached to at least one surface.

The house is secreted from oikoplasts, a specialized family of cells constituting the oikoplastic epithelium. Derived from the ectoderm, it covers part (in Fritillaria) or all (in Oikopleura) of the trunk. In larvae, surface fibrils are secreted by the epithelium prior to the differentiation of the oikoplasts, and have been suggested to play a part in the development of the first house, as well as the formation of the cuticular layer.

The houses possesses several sets of filters, with external filters stopping food particles too big for the larvacean to eat, and internal filters redirecting edible particles to the larvacean’s mouth. Including the external filters, the houses can reach over one meter in giant larvaceans, an order of magnitude larger than the larvacean itself. The house varies in shape: incomplete in Fritillaria, it is shaped like a pair of kidneys in Bathochordaeus, and toroidal in Kowalevskia.

The arrangement of filters allows food in the surrounding water to be brought in and concentrated prior to feeding, with some species able to concentrate food up to 1000 times compared to the surrounding water. By regularly beating the tail, the larvacean can generate water currents within its house that allow the concentration of food. For this purpose, the tail fits into a specialized tail sheath, a funnel of the house connected to the exhalent aperture. The high efficiency of this method allows larvaceans to feed on much smaller nanoplankton than most other filter feeders.

This specific niche of “mucous-mesh grazers” or “mammoth grazers” has been argued to be shared with thaliaceans (salps, pyrosomes and doliolids) — all using internal mucous structures —, as well as with sea butterflies, a clade of pelagic sea snails similarly using an external mucous web to catch prey, although through passive “flux feeding” rather than active filter-feeding.

Larvaceans have been found to be able to select food particles based on factors such as nutrient availability and toxin presence, although both laboratory feeding experiments and in situ observations show no difference in feeding rate between their usual food sources and microplastics. They can eat a wide range of particles sizes, down to one ten-thousandth of their own body size, far smaller than other filter-feeders of comparable size. On the other side of the spectrum, Okiopleura dioica can eat prey up to 20% of its body size. The upper limit on prey size is set by the mouth size, which in the largest genus Bathochordaeus is around 1–2 mm wide for a trunk length of 1–3 cm.

In some species, houses are discarded and replaced regularly as the animal grows in size and its filters become clogged; in Oikopleura, a house is kept for no more than four hours before being replaced. In other genera such as Fritillaria, houses can be regularly deflated and inflated, cleaning off particles clogging the filters. Houses being reused in this manner leads to a smaller contribution in marine snow from these genera.

Larvacean houses share key homologies with tunicate tunics, including the use of cellulose as a material, confirming that the ancestral tunicate already had the capability to synthesize cellulose. This has been confirmed through genetic studies on Oikopleura dioica and the ascidian Ciona, pinpointing their common cellulose synthase genes as originating with a horizontal gene transfer from a prokaryote. However, houses and tunics share key differences — while houses are gelatinous and can be deflated or even discarded at will, tunics are rigid structures definitively incorporated into the animal’s filter-feeding apparatus.

Habitat

Larvaceans are widespread, motile planktonic creatures, living through the water column. As their habitats are mostly defined by ocean currents, many species have a cosmopolitan distribution, with some like Oikopleura dioica being found in all of the world’s oceans. Larvaceans have been reported as far as the Southern Ocean, where they are estimated to comprise 10.5 million tonnes of wet biomass.

Most species live in the photic zone at less than 100 m in depth, although giant larvaceans such as Bathochordaeus mcnutti can be found up to 1,400 m deep, and undescribed oikopleurid and fritillariid species have been reported through the bathypelagic zone, down to the 3,500 m deep seafloor in Monterey Bay where they constitute the dominant particle feeders in most of the water column.

Reproduction and life cycle

Larvaceans reproduce sexually, with all but one species being protandric hermaphrodites. Unlike all other known larvaceans, Oikopleura dioica shows separate sexes, which are distinguished on the last day of their life cycle through differing gonad shapes.

The immature animals resemble the tadpole larvae of ascidians, albeit with the addition of developing viscera. Once the trunk is fully developed, the larva undergoes “tail shift”, in which the tail moves from a rearward position to a ventral orientation and twists 90° relative to the trunk. Following tail shift, the larvacean begins secretion of the first house.

The life cycle is short. The tadpole-shaped larva usually performs the tail shift less than one day after fecundation, becoming fully functional juveniles. Adults usually reproduce after 5 to 7 days depending on the species.

Fertilisation is external. The body wall ruptures during egg release, killing the animal.

Source: Wikipedia

(Leptocardii)

Lancelets

Ланцетникоподібні

The lancelets consist of 32 described species of “fish-like” benthic filter feeding chordates in the subphylum Cephalochordata, class Leptocardii, and family Branchiostomatidae.

Adult amphioxus typically inhabit the seafloor, burrowing into well-ventilated substrates characterized by a soft texture and minimal organic content. While various species have been observed in different types of substrate, such as fine sand, coarse sand, and shell deposits, most exhibit a distinct preference for coarse sand with low levels of fine particles. For instance, Branchiostoma nigeriense along the west coast of Africa, Branchiostoma caribaeum in Mississippi Sound and along the coast from South Carolina to Georgia, B. senegalense in the Atlantic Ocean on the shelf region off North West Africa, and B. lanceolatum along the Mediterranean coast of southern France all demonstrate this preference. However, Branchiostoma floridae from Tampa Bay, Florida, appears to be an exception to this trend, favoring fine sand bottoms instead.

Reproduction and spawning

Lancelets are gonochoric animals, i.e. having two sexes, and they reproduce via external fertilization. They only reproduce during their spawning season, which varies slightly between species — usually corresponding to spring and summer months. All lancelets species spawn shortly after sunset, either synchronously (e.g. Branchiostoma floridae, about once every two weeks during spawning season) or asynchronously (Branchiostoma lanceolatum, gradual spawning through the season).

As stated above, all amphioxus species exhibit gonochorism, with only rare instances of hermaphroditism reported in Branchiostoma lanceolatum and B. belcheri. In these cases, a small number of female gonads were observed within male individuals, typically ranging from 2 to 5 gonads out of a total of 45–50. An extraordinary occurrence of complete sex reversal was documented in B. belcheri, where a female amphioxus raised in laboratory conditions underwent a transformation into a male.

Anatomy

The larvae are extremely asymmetrical, with the mouth and anus on the left side, and the gill slits on the right side. Organs associated with the pharynx are positioned either exclusively on the left or on the right side of the body. In addition, segmented muscle blocks and parts of the nervous system are asymmetrical. After metamorphosis the anatomy becomes more symmetrical, but some asymmetrical traits are still present also as adults, such as the nervous system and the location of the gonads which are found on the right side in Asymmetron and Epigonichthys (in Branchiostoma gonads develop on both sides of body).

Depending on the exact species involved, the maximum length of lancelets is typically 2.5 to 8 cm. Branchiostoma belcheri and B. lanceolatum are among the largest. Except for the size, the species are very similar in general appearance, differing mainly in the number of myotomes and the pigmentation of their larvae. They have a translucent, somewhat fish-like body, but without any paired fins or other limbs. A relatively poorly developed tail fin is present, so they are not especially good swimmers. While they do possess some cartilage material stiffening the gill slits, mouth, and tail, they have no true complex skeleton.

Nervous system and notochord

In common with vertebrates, lancelets have a hollow nerve cord running along the back, pharyngeal slits and a tail that runs past the anus. Also like vertebrates, the muscles are arranged in blocks called myomeres.

Unlike vertebrates, the dorsal nerve cord is not protected by bone but by a simpler notochord made up of a cylinder of cells that are closely packed in collagen fibers to form a toughened rod. The lancelet notochord, unlike the vertebrate spine, extends into the head. This gives the subphylum, Cephalochordata. The fine structure of the notochord and the cellular basis of its adult growth are best known for the Bahamas lancelet, Asymmetron lucayanum.

The nerve cord is only slightly larger in the head region than in the rest of the body, so that lancelets do not appear to possess a true brain. However, developmental gene expression and transmission electron microscopy indicate the presence of a diencephalic forebrain, a possible midbrain, and a hindbrain.

Visual system

Lancelets have four known kinds of light-sensing structures: Joseph cells, Hesse organs, an unpaired anterior eye and lamellar body, all of which utilize opsins as light receptors. All of these organs and structures are located in the neural tube, with the frontal eye at the front, followed by the lamellar body, the Joseph cells, and the Hesse organs.

Fluorescent proteins

Lancelets naturally express green fluorescent proteins (GFP) inside their oral tentacles and near the eye spot. Depending on the species, it can also be expressed in the tail and gonads, though this is only reported in the Asymmetron genus. Multiple fluorescent protein genes have been recorded in lancelet species throughout the world. Branchiostoma floridae alone has 16 GFP-encoding genes. However, the GFP produced by lancelets is more similar to GFP produced by copepods than jellyfish (Aequorea victoria).

It is suspected GFP plays multiple roles with lancelets such as attracting plankton towards their mouth. Considering that lancelets are filter feeders, the natural current would draw nearby plankton into the digestive tract. GFP is also expressed in larvae, signifying it may be used for photoprotection by converting higher energy blue light to less harmful green light.

Feeding and digestive system

Lancelets are passive filter feeders, spending most of the time half-buried in sand with only their frontal part protruding. They eat a wide variety of small planktonic organisms, such as bacteria, fungi, diatoms, and zooplankton, and they will also take detritus. Little is known about the diet of the lancelet larvae in the wild, but captive larvae of several species can be maintained on a diet of phytoplankton, although this apparently is not optimal for Asymmetron lucayanum.

Lancelets have oral cirri, thin tentacle-like strands that hang in front of the mouth and act as sensory devices and as a filter for the water passing into the body. Water passes from the mouth into the large pharynx, which is lined by numerous gill-slits. The ventral surface of the pharynx contains a groove called the endostyle, which, connected to a structure known as Hatschek’s pit, produces a film of mucus. Ciliary action pushes the mucus in a film over the surface of the gill slits, trapping suspended food particles as it does so. The mucus is collected in a second, dorsal groove, known as the epipharyngeal groove, and passed back to the rest of the digestive tract. Having passed through the gill slits, the water enters an atrium surrounding the pharynx, then exits the body via the atriopore.

Both adults and larvae exhibit a “cough” reflex to clear the mouth or throat of debris or items too large to swallow. In larvae the action is mediated by the pharyngeal muscles while in the adult animal it is accomplished by atrial contraction.

The remainder of the digestive system consists of a simple tube running from the pharynx to the anus. The hepatic caecum, a single blind-ending caecum, branches off from the underside of the gut, with a lining able to phagocytize the food particles, a feature not found in vertebrates. Although it performs many functions of a liver, it is not considered a true liver but a homolog of the vertebrate liver.

Other systems

Lancelets have no respiratory system, breathing solely through their skin, which consists of a simple epithelium. Despite the name, little if any respiration occurs in the “gill” slits, which are solely devoted to feeding. The circulatory system does resemble that of primitive fish in its general layout, but is much simpler, and does not include a heart. There are no blood cells, and no hemoglobin.

The excretory system consists of segmented “kidneys” containing protonephridia instead of nephrons, and quite unlike those of vertebrates. Also unlike vertebrates, there are numerous, segmented gonads.

Source: Wikipedia