Bg molluscs

(Mollusca)

Molluscs

Молюски

Mollusca is a phylum of protostomic invertebrate animals, whose members are known as molluscs. Around 76,000 extant species of molluscs are recognized, making it the second-largest animal phylum after Arthropoda. The number of additional fossil species is estimated between 60,000 and 100,000, and the proportion of undescribed species is very high. Many taxa remain poorly studied.

Molluscs are the largest marine phylum, comprising about 23% of all the named marine organisms. They are highly diverse, not just in size and anatomical structure, but also in behaviour and habitat, as numerous groups are freshwater and even terrestrial species. The phylum is typically divided into 7 or 8 taxonomic classes, of which two are entirely extinct. Cephalopod molluscs, such as squid, cuttlefish, and octopuses, are among the most neurologically advanced of all invertebrates—and either the giant squid or the colossal squid is the largest known extant invertebrate species. The gastropods (snails, slugs and abalone) are by far the most diverse class and account for 80% of the total classified molluscan species.

The four most universal features defining modern molluscs are a soft body composed almost entirely of muscle, a mantle with a significant cavity used for breathing and excretion, the presence of a radula (except for bivalves), and the structure of the nervous system. Other than these common elements, molluscs express great morphological diversity, so many textbooks base their descriptions on a “hypothetical ancestral mollusc”. This has a single, “limpet-like” shell on top, which is made of proteins and chitin reinforced with calcium carbonate, and is secreted by a mantle covering the whole upper surface. The underside of the animal consists of a single muscular “foot”. Although molluscs are coelomates, the coelom tends to be small. The main body cavity is a hemocoel through which blood circulates; as such, their circulatory systems are mainly open. The “generalized” mollusc’s feeding system consists of a rasping “tongue”, the radula, and a complex digestive system in which exuded mucus and microscopic, muscle-powered “hairs” called cilia play various important roles. The generalized mollusc has two paired nerve cords, or three in bivalves. The brain, in species that have one, encircles the esophagus. Most molluscs have eyes, and all have sensors to detect chemicals, vibrations, and touch. The simplest type of molluscan reproductive system relies on external fertilization, but more complex variations occur. Nearly all produce eggs, from which may emerge trochophore larvae, more complex veliger larvae, or miniature adults. The coelomic cavity is reduced. They have an open circulatory system and kidney-like organs for excretion.

Mantle and mantle cavity

The mantle cavity, a fold in the mantle, encloses a significant amount of space. It is lined with epidermis, and is exposed, according to habitat, to sea, fresh water or air. The cavity was at the rear in the earliest molluscs, but its position now varies from group to group. The anus, a pair of osphradia (chemical sensors) in the incoming “lane”, the hindmost pair of gills and the exit openings of the nephridia (kidneys) known as “Organs of bojanus” and gonads (reproductive organs) are in the mantle cavity. The whole soft body of bivalves lies within an enlarged mantle cavity.

Shell

The mantle edge secretes a shell (secondarily absent in a number of taxonomic groups, such as the nudibranchs) that consists of mainly chitin and conchiolin (a protein hardened with calcium carbonate), except the outermost layer, which in almost all cases is all conchiolin. Molluscs never use phosphate to construct their hard parts, with the questionable exception of Cobcrephora. While most mollusc shells are composed mainly of aragonite, those gastropods that lay eggs with a hard shell use calcite (sometimes with traces of aragonite) to construct the eggshells.

The shell consists of three layers: the outer layer (the periostracum) made of organic matter, a middle layer made of columnar calcite, and an inner layer consisting of laminated calcite, often nacreous.

In some forms the shell contains openings. In abalone there are holes in the shell used for respiration and the release of egg and sperm, in the nautilus a string of tissue called the siphuncle goes through all the chambers, and the eight plates that make up the shell of chitons are penetrated with living tissue with nerves and sensory structures.

The body of a mollusc has a ventral muscular foot, which is adapted to different purposes (locomotion, grasping the substratum, burrowing or feeding) in different classes. The foot carries a pair of statocysts, which act as balance sensors. In gastropods, it secretes mucus as a lubricant to aid movement. In forms having only a top shell, such as limpets, the foot acts as a sucker attaching the animal to a hard surface, and the vertical muscles clamp the shell down over it; in other molluscs, the vertical muscles pull the foot and other exposed soft parts into the shell. In bivalves, the foot is adapted for burrowing into the sediment; in cephalopods it is used for jet propulsion, and the tentacles and arms are derived from the foot.

Circulatory system

Most molluscs’ circulatory systems are mainly open, except for cephalopods, whose circulatory systems are closed. Although molluscs are coelomates, their coeloms are reduced to fairly small spaces enclosing the heart and gonads. The main body cavity is a hemocoel through which blood and coelomic fluid circulate and which encloses most of the other internal organs. These hemocoelic spaces act as an efficient hydrostatic skeleton. The blood of these molluscs contains the respiratory pigment hemocyanin as an oxygen-carrier. The heart consists of one or more pairs of atria (auricles), which receive oxygenated blood from the gills and pump it to the ventricle, which pumps it into the aorta (main artery), which is fairly short and opens into the hemocoel. The atria of the heart also function as part of the excretory system by filtering waste products out of the blood and dumping it into the coelom as urine. A pair of metanephridia (“little kidneys”) to the rear of and connected to the coelom extracts any re-usable materials from the urine and dumps additional waste products into it, and then ejects it via tubes that discharge into the mantle cavity.

Exceptions to the above are the molluscs Planorbidae or ram’s horn snails, which are air-breathing snails that use iron-based hemoglobin instead of the copper-based hemocyanin to carry oxygen through their blood.

Respiration

Most molluscs have only one pair of gills, or even only a singular gill. Generally, the gills are rather like feathers in shape, although some species have gills with filaments on only one side. They divide the mantle cavity so water enters near the bottom and exits near the top. Their filaments have three kinds of cilia, one of which drives the water current through the mantle cavity, while the other two help to keep the gills clean. If the osphradia detect noxious chemicals or possibly sediment entering the mantle cavity, the gills’ cilia may stop beating until the unwelcome intrusions have ceased. Each gill has an incoming blood vessel connected to the hemocoel and an outgoing one to the heart.

Eating, digestion, and excretion

Molluscs use intracellular digestion. Most molluscs have muscular mouths with radulae, “tongues”, bearing many rows of chitinous teeth, which are replaced from the rear as they wear out. The radula primarily functions to scrape bacteria and algae off rocks, and is associated with the odontophore, a cartilaginous supporting organ. The radula is unique to the molluscs and has no equivalent in any other animal.

Molluscs’ mouths also contain glands that secrete slimy mucus, to which the food sticks. Beating cilia (tiny “hairs”) drive the mucus towards the stomach, so the mucus forms a long string called a “food string”.

At the tapered rear end of the stomach and projecting slightly into the hindgut is the prostyle, a backward-pointing cone of feces and mucus, which is rotated by further cilia so it acts as a bobbin, winding the mucus string onto itself. Before the mucus string reaches the prostyle, the acidity of the stomach makes the mucus less sticky and frees particles from it.

The particles are sorted by yet another group of cilia, which send the smaller particles, mainly minerals, to the prostyle so eventually they are excreted, while the larger ones, mainly food, are sent to the stomach’s cecum (a pouch with no other exit) to be digested. The sorting process is by no means perfect.

Periodically, circular muscles at the hindgut’s entrance pinch off and excrete a piece of the prostyle, preventing the prostyle from growing too large. The anus, in the part of the mantle cavity, is swept by the outgoing “lane” of the current created by the gills. Carnivorous molluscs usually have simpler digestive systems.

As the head has largely disappeared in bivalves, the mouth has been equipped with labial palps (two on each side of the mouth) to collect the detritus from its mucus.

Nervous system

The cephalic molluscs have two pairs of main nerve cords organized around a number of paired ganglia, the visceral cords serving the internal organs and the pedal ones serving the foot. Most pairs of corresponding ganglia on both sides of the body are linked by commissures (relatively large bundles of nerves). The ganglia above the gut are the cerebral, the pleural, and the visceral, which are located above the esophagus (gullet). The pedal ganglia, which control the foot, are below the esophagus and their commissure and connectives to the cerebral and pleural ganglia surround the esophagus in a circumesophageal nerve ring or nerve collar.

The acephalic molluscs (i.e., bivalves) also have this ring but it is less obvious and less important. The bivalves have only three pairs of ganglia—cerebral, pedal, and visceral—with the visceral as the largest and most important of the three functioning as the principal center of “thinking”. Some such as the scallops have eyes around the edges of their shells which connect to a pair of looped nerves and which provide the ability to distinguish between light and shadow.

Reproduction

The simplest molluscan reproductive system relies on external fertilization, but with more complex variations. All produce eggs, from which may emerge trochophore larvae, more complex veliger larvae, or miniature adults. Two gonads sit next to the coelom, a small cavity that surrounds the heart, into which they shed ova or sperm. The nephridia extract the gametes from the coelom and emit them into the mantle cavity. Molluscs that use such a system remain of one sex all their lives and rely on external fertilization. Some molluscs use internal fertilization and/or are hermaphrodites, functioning as both sexes; both of these methods require more complex reproductive systems. C. obtusus is an endemic snail species of the Eastern Alps. There is strong evidence for self-fertilization in the easternmost snail populations of this species.

The most basic molluscan larva is a trochophore, which is planktonic and feeds on floating food particles by using the two bands of cilia around its “equator” to sweep food into the mouth, which uses more cilia to drive them into the stomach, which uses further cilia to expel undigested remains through the anus. New tissue grows in the bands of mesoderm in the interior, so the apical tuft and anus are pushed further apart as the animal grows. The trochophore stage is often succeeded by a veliger stage in which the prototroch, the “equatorial” band of cilia nearest the apical tuft, develops into the velum (“veil”), a pair of cilia-bearing lobes with which the larva swims. Eventually, the larva sinks to the seafloor and metamorphoses into the adult form. While metamorphosis is the usual state in molluscs, the cephalopods differ in exhibiting direct development: the hatchling is a ‘miniaturized’ form of the adult. The development of molluscs is of particular interest in the field of ocean acidification as environmental stress is recognized to affect the settlement, metamorphosis, and survival of larvae.

Feeding

Most molluscs are herbivorous, grazing on algae or filter feeders. For those grazing, two feeding strategies are predominant. Some feed on microscopic, filamentous algae, often using their radula as a ‘rake’ to comb up filaments from the sea floor. Others feed on macroscopic ‘plants’ such as kelp, rasping the plant surface with its radula. To employ this strategy, the plant has to be large enough for the mollusc to ‘sit’ on, so smaller macroscopic plants are not as often eaten as their larger counterparts. Filter feeders are molluscs that feed by straining suspended matter and food particles from water, typically by passing the water over their gills. Most bivalves are filter feeders, which can be measured through clearance rates. Research has demonstrated that environmental stress can affect the feeding of bivalves by altering the energy budget of organisms.

Cephalopods are primarily predatory, and the radula takes a secondary role to the jaws and tentacles in food acquisition. The monoplacophoran Neopilina uses its radula in the usual fashion, but its diet includes protists such as the xenophyophore Stannophyllum. Sacoglossan sea-slugs suck the sap from algae, using their one-row radula to pierce the cell walls, whereas dorid nudibranchs and some Vetigastropoda feed on sponges and others feed on hydroids.

Source: Wikipedia